Editing Training the AWS DeepRacer
Jump to navigation
Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 214: | Line 214: | ||
|Number of experience episodes between each policy-updating iteration||The size of the experience buffer used to draw training data from for learning policy network weights. An episode is a period in which the vehicle starts from a given starting point and ends up completing the track or going off the track. Different episodes can have different lengths. For simple reinforcement-learning problems, a small experience buffer may be sufficient and learning will be fast. For more complex problems which have more local maxima, a larger experience buffer is necessary to provide more uncorrelated data points. In this case, training will be slower but more stable. | |Number of experience episodes between each policy-updating iteration||The size of the experience buffer used to draw training data from for learning policy network weights. An episode is a period in which the vehicle starts from a given starting point and ends up completing the track or going off the track. Different episodes can have different lengths. For simple reinforcement-learning problems, a small experience buffer may be sufficient and learning will be fast. For more complex problems which have more local maxima, a larger experience buffer is necessary to provide more uncorrelated data points. In this case, training will be slower but more stable. | ||
|} | |} | ||
− | |||
− | |||
− | |||
== Frequently asked questions == | == Frequently asked questions == | ||
[[Training FAQ]] | [[Training FAQ]] |